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Abstract. The main result of this paper provides an explicit decomposition of the proximity3
operator of the sum of two closed and convex functions. For this purpose, we introduce a new oper-4
ator, called f-proximity operator, generalizing the classical notion. After providing some properties5
and characterizations, we discuss the relations between the f-proximity operator and the classical6
Douglas-Rachford operator. In particular we provide a one-loop algorithm allowing to compute nu-7
merically this new operator, and thus the proximity operator of the sum of two closed and convex8
functions. Finally we illustrate the usefulness of our main result in the context of sensitivity analysis9
of linear variational inequalities of second kind in a Hilbert space.10
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1. Introduction, notations and basics.14

1.1. Introduction. The proximity operator of a proper, closed, convex and15

extended-real-valued function was first introduced by J.-J. Moreau in 1965 in [18]16

and can be viewed as an extension of the projection operator on a closed and con-17

vex subset of a Hilbert space. This wonderful tool plays an important role, from18

both theoretical and numerical points of view, in convex optimization problems (see,19

e.g., [5, 16, 20, 22]), inverse problems (see, e.g., [4, 6]), signal processing (see, e.g., [8]),20

etc. We also refer to [7, 12] and references therein. For the rest of this introduction,21

we use standard notations of convex analysis. For the reader who is not acquainted22

with convex analysis, we refer to Section 1.2 for notations and basics.23

Motivations from a sensitivity analysis. The present paper was initially24

motivated by the sensitivity analysis, with respect to a nonnegative parameter t ≥ 0, of25

some parameterized linear variational inequalities of second kind in a Hilbert space H,26

with a corresponding functional denoted by h ∈ Γ0(H). In that framework, the27

solution u(t) ∈ H (that depends on the parameter t) can be expressed in terms of28

the proximity operator of h denoted by proxh. As a consequence, the differentiability29

of u(·) at t = 0 is strongly related to the regularity of proxh. If h is a smooth30

functional, one can easily compute (from the classical implicit function theorem for31

instance) the differential of proxh, and then the sensitivity analysis can be achieved.32

In that smooth case, note that the variational inequality can actually be reduced to an33

equality. On the other hand, if h = ιK is the indicator function of a nonempty closed34

and convex subset K of H, then proxh = projK is the classical projection operator35

on K. In that case, a result of F. Mignot (see [17, Theorem 2.1 p.145], see also [13,36

Theorem 2 p.620]) provides an asymptotic development of proxh = projK and permits37

to obtain a differentiability result on u(·) at t = 0.38

In a parallel work (in progress) of the authors on some shape optimization problems39
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2 S. ADLY, L. BOURDIN, AND F. CAUBET

with unilateral contact and friction, the considered variational inequality involves the40

sum of two functions, that is, h = f + g where f = ιK is the indicator function41

of a nonempty closed and convex set of constraints K, and g ∈ Γ0(H) is a smooth42

functional (derived from the regularization of the friction functional in view of a43

numerical treatment). Despite the regularity of g, note that the variational inequality44

here cannot be reduced to an equality due to the presence of the constraint set K.45

In that framework, in order to get an asymptotic development of proxh = proxf+g,46

a first and natural strategy would be to develop a splitting method, looking for an47

explicit expression of proxf+g depending only on the knowledge of proxf and proxg.48

Unfortunately, this question still remains an open challenge in the literature. Let us49

mention that Y.-L. Yu provides in [24] some necessary and/or sufficient conditions on50

general functions f , g ∈ Γ0(H) under which proxf+g = proxf ◦ proxg. Unfortunately,51

these conditions are very restrictive and are not satisfied in most of cases.52

Before coming to the main topic of this paper, we recall that a wide literature is53

already concerned with the sensitivity analysis of parameterized (linear and nonlinear)54

variational inequalities. We refer for instance to [3, 13, 19, 23] and references therein.55

The results in there are considered in very general frameworks. We precise that our56

original objective was to look for a simple and compact formula for the derivative u′(0)57

in the very particular case described above, that is, in the context of a linear variational58

inequality and with h = f + g where f is an indicator function and g is a smooth59

functional. For this purpose, we were led to consider the proximity operator of the60

sum of two proper closed and convex functions, to introduce a new operator and61

finally to prove the results presented in this paper.62

Introduction of the f-proximity operator and main result. Let us con-
sider general functions f , g ∈ Γ0(H). Section 2 is devoted to the introduction (see
Definition 2.1) of a new operator denoted by proxf

g , called f -proximity operator of g
and defined by

proxf
g :=

(
I + ∂g ◦ proxf

)−1
.

We prove that its domain satisfies D(proxf
g ) = H if and only if ∂(f + g) = ∂f + ∂g63

(see Proposition 2.4), and that proxf
g can be seen as a generalization of proxg in64

the sense that, if f is constant for instance, then proxf
g = proxg. More general65

sufficient (and necessary) conditions under which proxf
g = proxg are provided in66

Propositions 2.11 and 2.14. Note that proxf
g : H ⇒ H is a priori a set-valued operator.67

We provide in Proposition 2.17 some sufficient conditions under which proxf
g is single-68

valued. Some examples illustrate all the previous results throughout the section (see69

Examples 2.2, 2.3, 2.6 and 2.16).70

Finally, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, the main result of71

the present paper (see Theorem 2.7) provides the equality72

proxf+g = proxf ◦ proxf
g .73

Theorem 2.7 allows to prove in a simple and concise way almost all other results of74

this paper, making it central in our work.75

Relations with the classical Douglas-Rachford operator and algorithms.
Recall that the proximity operator proxf+g is strongly related to the minimization
problem

argmin f + g,
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ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 3

since the solutions are exactly the fixed points of proxf+g. In the sequel, we will76

assume that the above problem admits at least one solution. In most of cases, proxf+g77

cannot be easily computable, even if proxf and proxg are known. As a consequence,78

to the best of our knowledge, no proximal algorithm xn+1 = proxf+g(xn), using only79

the knowledge of proxf and proxg, has been provided in the literature.80

The classical Douglas-Rachford operator, introduced in [9] and denoted by Tf,g (see
Section 3 for details), provides an algorithm xn+1 = Tf,g(xn) that is weakly convergent
to some x∗ ∈ H satisfying

proxf (x∗) ∈ argmin f + g.

Even if the Douglas-Rachford algorithm is not a proximal algorithm in general, it81

is a very powerful tool since it is a one-loop algorithm, allowing to solve the above82

minimization problem, that only requires the knowledge of proxf and proxg. We refer83

to [10, 15] and [2, Section 27.2 p.400] for more details.84

Section 3 deals with the relations between the Douglas-Rachford operator Tf,g and85

the f -proximity operator proxf
g introduced in this paper. Precisely, for all x ∈ H,86

we prove in Proposition 3.2 that proxf
g (x) coincides with the set of fixed points87

of T f,g(x, ·), where T f,g(x, ·) denotes a x-dependent generalization of the classi-88

cal Douglas-Rachford operator Tf,g. We refer to Section 3 for the precise defi-89

nition of T f,g(x, ·) that only depends on the knowledge of proxf and proxg. In90

particular, if x ∈ D(proxf
g ), we prove in Theorem 3.3 that the fixed-point algo-91

rithm yk+1 = T f,g(x, yk), denoted by (A1), weakly converges to some y∗ ∈ proxf
g (x).92

Moreover, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, we get from93

Theorem 2.7 that proxf (y∗) = proxf+g(x). In that situation, we conclude that Algo-94

rithm (A1) is a one-loop algorithm, that depends only on the knowledge of proxf and95

proxg, allowing to compute numerically proxf+g(x).96

As a consequence, a proximal-like algorithm xn+1 = proxf+g(xn), denoted by (A2),97

using only the knowledge of proxf and proxg, can be derived in the above framework98

(see Remark 3.7). We refer to Definition 3.5 for the precise meaning of proximal-like99

algorithm.100

The aim of the present theoretical paper is not to discuss numerical experiments and101

comparisons between numerical algorithms (this should be the topic of future works).102

However, it should be noted that, in contrary to the classical Douglas-Rachford algo-103

rithm, a proximal-like algorithm is a two-loops algorithm. As a consequence, it should104

not be expected from Algorithm (A2) better performances than the Douglas-Rachford105

algorithm for solving the minimization problem argmin f + g.106

Some other applications and forthcoming works. Section 4 can be seen as107

a conclusion of the paper. Its aim is to provide a glimpse of some other applications108

of our main result (Theorem 2.7) and to raise open questions for forthcoming works.109

This section is splitted into two parts.110

In Section 4.1 we consider the framework where f , g ∈ Γ0(H) with g differentiable111

on H. In that framework, we prove from Theorem 2.7 that proxf+g is related to the112

classical Forward-Backward operator (see [7, Section 10.3 p.191] for details) denoted113

by Ff,g. Precisely, for all x ∈ H, we prove in Proposition 4.1 that proxf+g(x) coincides114

with the set of fixed points of Ff,g(x, ·), where Ff,g(x, ·) denotes a x-dependent gen-115

eralization of the classical Forward-Backward operator Ff,g. We refer to Section 4.1116
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4 S. ADLY, L. BOURDIN, AND F. CAUBET

for the precise definition of Ff,g(x, ·) that only depends on the knowledge of proxf117

and ∇g. From this point, one can develop a similar strategy as in Section 3. Precisely,118

for all x ∈ H, one can consider the one-loop algorithm yk+1 = Ff,g(x, yk), denoted119

by (A3), in order to compute numerically proxf+g(x), with the only knowledge of120

proxf and ∇g. Moreover, one can also deduce a two-loops algorithm denoted by (A4)121

as a potential proximal-like algorithm xn+1 = proxf+g(xn), using only the knowledge122

of proxf and ∇g. Convergence proofs (under some assumptions on f and g) and123

numerical experiments of Algorithms (A3) and (A4) should be the topic of future124

works.125

In Section 4.2 we return back to our initial motivation, namely the sensitivity anal-
ysis, with respect to a nonnegative parameter t ≥ 0, of some parameterized linear
variational inequalities of second kind. Precisely, under some assumptions (see Propo-
sition 4.3 for details), we derive from Theorem 2.7 that if

u(t) = proxf+g(r(t)),

where f = ιK (where K is a nonempty closed convex set) and where g ∈ Γ0(H) is a
smooth enough functional, then

u′(0) = proxϕf+ϕg
(r′(0)),

where ϕf := ιC (where C is a nonempty closed convex subset of H related to K)126

and where ϕg(x) := 1
2 〈D

2g(u(0))(x), x〉 for all x ∈ H. We refer to Proposition 4.3127

for details. It should be noted that the assumptions of Proposition 4.3 are quite128

restrictive, raising open questions about their relaxations (see Remark 4.5). This also129

should be the subject of a forthcoming work.130

1.2. Notations and basics. In this section we introduce some notations avail-131

able throughout the paper and we recall some basics of convex analysis. We refer to132

standard books like [2, 14, 21] and references therein.133

Let H be a real Hilbert space and let 〈·, ·〉 (resp. ‖ · ‖) be the corresponding scalar
product (resp. norm). For all subset S of H, we denote respectively by int(S) and cl(S)
its interior and its closure. In the sequel we denote by I : H → H the identity
application and by Lx : H→ H the affine operator defined by

Lx(y) := x− y,

for all x, y ∈ H.134

For a set-valued map A : H ⇒ H, the domain of A is given by

D(A) := {x ∈ H | A(x) 6= ∅}.

We denote by A−1 : H ⇒ H the set-valued map defined by

A−1(y) := {x ∈ H | y ∈ A(x)},

for all y ∈ H. Note that y ∈ A(x) if and only if x ∈ A−1(y), for all x, y ∈ H. The
range of A is given by

R(A) := {y ∈ H | A−1(y) 6= ∅} = D(A−1).
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ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 5

We denote by Fix(A) the set of all fixed points of A, that is, the set given by

Fix(A) := {x ∈ H | x ∈ A(x)}.

Finally, if A(x) is a singleton for all x ∈ D(A), we say that A is single-valued.135

For all extended-real-valued functions g : H→ R∪{+∞}, the domain of g is given by

dom(g) := {x ∈ H | g(x) < +∞}.

We say that g is proper if dom(g) 6= ∅, and that g is closed (or lower semi-continuous)136

if its epigraph is a closed subset of H× R.137

Let g : H → R ∪ {+∞} be a proper extended-real-valued function. We denote
by g∗ : H→ R ∪ {+∞} the conjugate of g defined by

g∗(y) := sup
z∈H
{〈y, z〉 − g(z)},

for all y ∈ H. Recall that g∗ is closed and convex.138

We denote by Γ0(H) the set of all extended-real-valued functions g : H→ R ∪ {+∞}
that are proper closed and convex. If g ∈ Γ0(H), recall that g∗ ∈ Γ0(H). The Fenchel-
Moreau equality is given by g∗∗ = g. For all g ∈ Γ0(H), we denote by ∂g : H ⇒ H the
Fenchel-Moreau subdifferential of g defined by

∂g(x) := {y ∈ H | 〈y, z − x〉 ≤ g(z)− g(x), ∀z ∈ H},

for all x ∈ H. It is easy to check that ∂g is a monotone operator and that, for139

all x ∈ H, 0 ∈ ∂g(x) if and only if x ∈ argmin g. Moreover, for all x, y ∈ H, it holds140

that y ∈ ∂g(x) if and only if x ∈ ∂g∗(y). Recall that, if g is differentiable on H,141

then ∂g(x) = {∇g(x)} for all x ∈ H.142

Let A : H→ H be a single-valued operator defined everywhere on H, and let g ∈ Γ0(H).143

We denote by VI(A, g) the variational inequality which consists of finding y ∈ H such144

that145

−A(y) ∈ ∂g(y),146

or equivalently,147

〈A(y), z − y〉+ g(z)− g(y) ≥ 0,148

for all z ∈ H. Then we denote by SolVI(A, g) the set of solutions of VI(A, g). Re-149

call that if A is Lipschitzian and strongly monotone, then VI(A, g) admits a unique150

solution, i.e. SolVI(A, g) is a singleton.151

Let g ∈ Γ0(H). The classical proximity operator of g is defined by

proxg := (I + ∂g)−1.

Recall that proxg is a single-valued operator defined everywhere on H. Moreover, it
can be characterized as follows:

proxg(x) = argmin
(
g +

1

2
‖ · −x‖2

)
= SolVI(−Lx, g),
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6 S. ADLY, L. BOURDIN, AND F. CAUBET

for all x ∈ H. It is also well-known that

Fix(proxg) = argmin g.

The classical Moreau’s envelope Mg : H→ R of g is defined by

Mg(x) := min
(
g +

1

2
‖ · −x‖2

)
,

for all x ∈ H. Recall that Mg is convex and differentiable on H with ∇Mg = proxg∗ .
Let us also recall the classical Moreau’s decompositions

proxg + proxg∗ = I and Mg + Mg∗ =
1

2
‖ · ‖2.

Finally, it is well-known that if g = ιK is the indicator function of a nonempty closed152

and convex subset K of H, that is, ιK(x) = 0 if x ∈ K and ιK(x) = +∞ if not,153

then proxg = projK, where projK denotes the classical projection operator on K.154

2. The f-proximity operator.155

2.1. Main result. Let f , g ∈ Γ0(H). In this section we introduce (see Def-156

inition 2.1) a new operator denoted by proxf
g , generalizing the classical proximity157

operator proxg. Under the additivity condition ∂(f + g) = ∂f + ∂g, we prove in158

Theorem 2.7 that proxf+g can be written as the composition of proxf with proxf
g .159

Definition 2.1 (f -proximity operator). Let f , g ∈ Γ0(H). The f -proximity operator
of g is the set-valued map proxf

g : H ⇒ H defined by

proxf
g := (I + ∂g ◦ proxf )−1.

Note that proxf
g can be seen as a generalization of proxg since proxc

g = proxg for all160

constant c ∈ R.161

Example 2.2. Let us assume that H = R. We consider f = ι[−1,1] and g(x) = |x| for162

all x ∈ R. In that case we obtain that ∂g ◦ proxf = ∂g and thus proxf
g = proxg.163

Example 2.2 provides a simple situation where proxf
g = proxg while f is not constant.164

We provide in Propositions 2.11 and 2.14 some general sufficient (and necessary)165

conditions under which proxf
g = proxg.166

Example 2.3. Let us assume that H = R. We consider f = ι{0} and g(x) = |x| for167

all x ∈ R. In that case we obtain that ∂g ◦ proxf (x) = [−1, 1] for all x ∈ R. As168

a consequence proxf
g (x) = [x − 1, x + 1] for all x ∈ R. See Figure 1 for graphic169

representations of proxg and proxf
g in that case.170

Example 2.3 provides a simple illustration where proxf
g is not single-valued. In171

particular it follows that proxf
g cannot be written as a proximity operator proxϕ172

with ϕ ∈ Γ0(H). We provide in Proposition 2.17 some sufficient conditions under173

which proxf
g is single-valued. Moreover, Example 2.3 provides a simple situation174

where ∂g ◦ proxf is not a monotone operator. As a consequence, it may be possible175

that D(proxf
g )  H. In the next proposition, a necessary and sufficient condition176

under which D(proxf
g ) = H is derived.177

Proposition 2.4. Let f , g ∈ Γ0(H). It holds that D(proxf
g ) = H if and only if the178

additivity condition179

(1) ∂(f + g) = ∂f + ∂g,180
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is satisfied.181

Proof. We first assume that ∂(f + g) = ∂f + ∂g. Let x ∈ H. Defining w =182

proxf+g(x) ∈ H, we obtain that x ∈ w + ∂(f + g)(w) = w + ∂f(w) + ∂g(w). Thus,183

there exist wf ∈ ∂f(w) and wg ∈ ∂g(w) such that x = w + wf + wg. We de-184

fine y = w + wf ∈ w + ∂f(w). In particular we have w = proxf (y). Moreover we185

obtain x = y + wg ∈ y + ∂g(w) = y + ∂g(proxf (y)). We conclude that y ∈ proxf
g (x).186

Without any additional assumption and directly from the definition of the subdiffer-187

ential, one can easily see that the inclusion ∂f(w) + ∂g(w) ⊂ ∂(f + g)(w) is always188

satisfied for every w ∈ H. Now let us assume that D(proxf
g ) = H. Let w ∈ H and189

let z ∈ ∂(f + g)(w). We consider x = w+ z ∈ w+ ∂(f + g)(w). In particular it holds190

that w = proxf+g(x). Since D(proxf
g ) = H, there exists y ∈ proxf

g (x) and thus it191

holds that x ∈ y+∂g(proxf (y)). Moreover, since y ∈ proxf (y)+∂f(proxf (y)), we get192

that x ∈ proxf (y) + ∂f(proxf (y)) + ∂g(proxf (y)) ⊂ proxf (y) + ∂(f + g)(proxf (y)).193

Thus it holds that proxf (y) = proxf+g(x) = w. Moreover, since x ∈ proxf (y) +194

∂f(proxf (y))+∂g(proxf (y)), we obtain that x ∈ w+∂f(w)+∂g(w). We have proved195

that z = x− w ∈ ∂f(w) + ∂g(w). This concludes the proof.196

In most of the present paper, we will assume that Condition (1) is satisfied. It is not197

our aim here to discuss the weakest qualification condition ensuring Condition (1). A198

wide literature already deals with this topic (see, e.g., [1, 11, 20]). However, we recall199

in the following remark the classical sufficient condition of Moreau-Rockafellar under200

which Condition (1) holds true (see, e.g., [2, Corollary 16.38 p.234]), and we provide201

a simple example where Condition (1) does not holds and D(proxf
g )  H.202

Remark 2.5 (Moreau-Rockafellar theorem). Let f , g ∈ Γ0(H) such that dom(f) ∩203

int(dom(g)) 6= ∅. Then ∂(f + g) = ∂f + ∂g.204

Example 2.6. Let us assume that H = R. We consider f = ιR− and g(x) = ιR+(x)−
√
x205

for all x ∈ R. In that case, one can easily check that ∂f(0) + ∂g(0) = ∅  R =206

∂(f + g)(0) and D(proxf
g ) = ∅  H.207

We are now in position to state and prove the main result of the present paper.208

Theorem 2.7. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g. It holds that

proxf+g = proxf ◦ proxf
g .

In other words, for every x ∈ H, we have proxf+g(x) = proxf (z) for all z ∈ proxf
g (x).209

Proof. Let x ∈ H and let y ∈ proxf
g (x) constructed as in the first part of the proof of

Proposition 2.4. In particular it holds that proxf (y) = proxf+g(x). Let z ∈ proxf
g (x).

We know that x−y ∈ ∂g(proxf (y)) and x−z ∈ ∂g(proxf (z)). Since ∂g is a monotone
operator, we obtain that

〈(x− y)− (x− z),proxf (y)− proxf (z)〉 ≥ 0.

From the cocoercivity (see [2, Definition 4.4 p.60]) of the proximity operator, we
obtain that

0 ≥ 〈y − z,proxf (y)− proxf (z)〉 ≥ ‖proxf (y)− proxf (z)‖2 ≥ 0.

We deduce that proxf (z) = proxf (y) = proxf+g(x). The proof is complete.210

Remark 2.8. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g and let x ∈ H. The-211

orem 2.7 states that, even if proxf
g (x) is not a singleton, all elements of proxf

g (x)212
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8 S. ADLY, L. BOURDIN, AND F. CAUBET

has the same value through the proximity operator proxf , and this value is equal213

to proxf+g(x).214

Remark 2.9. Note that the additivity condition ∂(f + g) = ∂f + ∂g is not only suf-215

ficient, but also necessary for the validity of the equality proxf+g = proxf ◦ proxf
g .216

Indeed, from Proposition 2.4, if ∂f +∂g  ∂(f +g), then there exists x ∈ H such that217

proxf
g (x) = ∅ and thus proxf+g(x) 6= proxf ◦ proxf

g (x).218

Remark 2.10. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f +∂g. From Theorem 2.7, we219

deduce that R(proxf+g) ⊂ R(proxf )∩R(proxg). If the additivity condition ∂(f+g) =220

∂f + ∂g is not satisfied, this remark does not hold true anymore. Indeed, with the221

framework of Example 2.6, we have R(proxf+g) = {0} while 0 /∈ R(proxg).222

2.2. Additional results. Let f , g ∈ Γ0(H). We know that proxf
g is a gener-223

alization of proxg in the sense that proxf
g = proxg if f is constant for instance. In224

the next proposition, our aim is to provide more general sufficient (and necessary)225

conditions under which proxf
g = proxg. We will base our discussion on the following226

conditions:227

(2) ∀x ∈ H, ∂g(x) ⊂ ∂g(proxf (x)),228

229

(3) ∀x ∈ H, ∂g(proxf (x)) ⊂ ∂g(x).230

Note that Condition (2) has been introduced by Y.-L. Yu in [24] as a sufficient con-231

dition under which proxf+g = proxf ◦ proxg.232

Proposition 2.11. Let f , g ∈ Γ0(H).233

(i) If Condition (2) is satisfied, then proxg(x) ∈ proxf
g (x) for all x ∈ H.234

(ii) If Conditions (1) and (3) are satisfied, then proxf
g (x) = proxg(x) for all235

x ∈ H.236

In both cases, it holds that proxf+g = proxf ◦ proxg.237

Proof. Let x ∈ H. If Condition (2) is satisfied, considering y = proxg(x), we get238

that x ∈ y + ∂g(y) ⊂ y + ∂g(proxf (y)) and thus y ∈ proxf
g (x). In particular, it holds239

that D(proxf
g ) = H and thus ∂(f + g) = ∂f + ∂g from Proposition 2.4. On the other240

hand, if Conditions (1) and (3) are satisfied, then D(proxf
g ) = H from Proposition 2.4.241

Considering y ∈ proxf
g (x), we get that x ∈ y+∂g(proxf (y)) ⊂ y+∂g(y) and thus y =242

proxg(x). The last assertion of Proposition 2.11 directly follows from Theorem 2.7.243

Remark 2.12. From Proposition 2.11, we deduce that Condition (2) implies Condi-244

tion (1).245

In the first item of Proposition 2.11 and if proxf
g is set-valued, we are in the situation246

where proxg is a selection of proxf
g . Proposition 2.14 specifies this selection in the247

case where ∂(f + g) = ∂f + ∂g.248

Lemma 2.13. Let f , g ∈ Γ0(H). Then proxf
g (x) is a nonempty closed and convex249

subset of H for all x ∈ D(proxf
g ).250

Proof. The proof of Lemma 2.13 is provided after the proof of Proposition 3.2 (re-251

quired).252

Proposition 2.14. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g and let x ∈ H.
If proxg(x) ∈ proxf

g (x), then

proxg(x) = projproxf
g (x)

(proxf+g(x)).
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Proof. If proxg(x) ∈ proxf
g (x), then x ∈ D(proxf

g ) and thus proxf
g (x) is a nonempty253

closed and convex subset of H from Lemma 2.13. Let z ∈ proxf
g (x). In par-254

ticular we have proxf (z) = proxf+g(x) from Theorem 2.7. Using the fact that255

x − proxg(x) ∈ ∂g(proxg(x)) and x − z ∈ ∂g(proxf (z)) = ∂g(proxf+g(x)) together256

with the monotonicity of ∂g, we obtain that257

258

〈proxf+g(x)− proxg(x), z − proxg(x)〉259

= 〈proxf+g(x)− proxg(x), (x− proxg(x))− (x− z)〉 ≤ 0.260261

Since proxg(x) ∈ proxf
g (x), we conclude the proof from the classical characterization262

of projproxf
g (x)

.263

Remark 2.15. Let f = ι{ω} with ω ∈ H and let g ∈ Γ0(H) such that ω ∈ int(dom(g)).
Hence the additivity condition ∂(f +g) = ∂f +∂g is satisfied from Remark 2.5. From
Remark 2.10 and since proxf = proj{ω}, we easily deduce that R(proxf+g) = {ω}.
Let x ∈ H such that proxg(x) ∈ proxf

g (x). From Proposition 2.14 we get that

proxg(x) = projproxf
g (x)

(ω).

If moreover ω = 0, we deduce that proxg(x) is the particular selection that corresponds264

to the element of minimal norm in proxf
g (x) (also known as the lazy selection). The265

following example is in this sense.266

Example 2.16. Let us consider the framework of Example 2.3. In that case, Condi-267

tions (1) and (2) are satisfied. We deduce from Proposition 2.11 that proxg(x) ∈268

proxf
g (x) for all x ∈ R. From Remark 2.15, we conclude that proxg(x) is exactly the269

element of minimal norm in proxf
g (x) for all x ∈ R. This result is clearly illustrated270

by the graphs of proxg and proxf
g provided in Figure 1.

0

proxg

proxf
g

Fig. 1. Examples 2.3 and 2.16, graph of proxg in bold line, and graph of proxf
g in gray.

271

Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g. From Theorem 2.7, one can easily272

see that, if proxf is injective, then proxf
g is single-valued. Since the injection of proxf273

is too restrictive, other sufficient conditions under which proxf
g is single-valued are274

provided from Theorem 2.7 in the next proposition.275
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Proposition 2.17. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g. If either ∂f276

or ∂g is single-valued, then proxf
g is single-valued.277

Proof. Let x ∈ H and let z1, z2 ∈ proxf
g (x). From Theorem 2.7, it holds that278

proxf (z1) = proxf (z2) = proxf+g(x). If the operator ∂f is single-valued, we ob-279

tain that z1 = proxf+g(x) + ∂f(proxf+g(x)) = z2. If the operator ∂g is single-valued,280

we get x− z1 = ∂g(proxf (z1)) = ∂g(proxf (z2)) = x− z2 and thus z1 = z2.281

3. Relations with the Douglas-Rachford operator. Let f , g ∈ Γ0(H). The
classical Douglas-Rachford operator Tf,g : H → H associated to f and g is usually
defined by

Tf,g(y) := y − proxf (y) + proxg(2proxf (y)− y),

for all y ∈ H. We refer to [9, 10, 15] and to [2, Section 27.2 p.400] for more details.282

One aim of this section is to study the relations between the f -proximity opera-
tor proxf

g introduced in this paper and the Douglas-Rachford operator Tf,g. For this

purpose, we introduce an extension T f,g : H×H→ H of the classical Douglas-Rachford
operator defined by

T f,g(x, y) := y − proxf (y) + proxg(x+ proxf (y)− y),

for all x, y ∈ H.283

Note that Tf,g(y) = T f,g(proxf (y), y) for all y ∈ H, and that the definition of T f,g284

only depends on the knowledge of proxf and proxg.285

3.1. Several characterizations of proxf
g . Let f , g ∈ Γ0(H). In this section,286

our aim is to derive several characterizations of proxf
g in terms of solutions of varia-287

tional inequalities, of minimization problems and of fixed point problems (see Propo-288

sition 3.2).289

Lemma 3.1. Let f , g ∈ Γ0(H). It holds that

T f,g(x, ·) = proxg∗◦Lx
◦ proxf∗ ,

for all x ∈ H.290

Proof. Let x ∈ H. Lemma 3.1 directly follows from the equality proxg∗◦Lx
= Lx ◦291

proxg∗ ◦ Lx (see [2, Proposition 23.29 p.342]) and from Moreau’s decompositions.292

Proposition 3.2. Let f , g ∈ Γ0(H). It holds that

proxf
g (x) = SolVI(proxf , g

∗ ◦ Lx) = argmin (Mf∗ + g∗ ◦ Lx) = Fix(T f,g(x, ·)),

for all x ∈ H.293

Proof. In this proof we will use standard properties of convex analysis recalled in294

Section 1.2. Let x ∈ H. One can easily prove that ∂(g∗ ◦ Lx) = −∂g∗ ◦ Lx. For295

all y ∈ H, it holds that296

y ∈ proxf
g (x)⇐⇒ x− y ∈ ∂g(proxf (y))297

⇐⇒ proxf (y) ∈ ∂g∗(x− y)298

⇐⇒ −proxf (y) ∈ ∂(g∗ ◦ Lx)(y).299

Moreover, since dom(Mf∗) = H and from Remark 2.5, we have300

−proxf (y) ∈ ∂(g∗ ◦ Lx)(y)⇐⇒ 0 ∈ ∇Mf∗(y) + ∂(g∗ ◦ Lx)(y)301

⇐⇒ 0 ∈ ∂(Mf∗ + g∗ ◦ Lx)(y).302

This manuscript is for review purposes only.



ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 11

Finally,303

−proxf (y) ∈ ∂(g∗ ◦ Lx)(y)⇐⇒ proxf∗(y) ∈ y + ∂(g∗ ◦ Lx)(y)304

⇐⇒ y = proxg∗◦Lx
◦ proxf∗(y).305

This concludes the proof from Lemma 3.1.306

Proof of Lemma 2.13. Let x ∈ D(proxf
g ). In particular proxf

g (x) is not empty. From
Proposition 3.2, we have

proxf
g (x) = argmin (Mf∗ + g∗ ◦ Lx).

Since Mf∗ + g∗ ◦ Lx ∈ Γ0(H), one can easily deduce that proxf
g (x) is closed and307

convex.308

3.2. A one-loop algorithm in order to compute proxf
g numerically. Let309

f , g ∈ Γ0(H). In this section, our aim is to derive a one-loop algorithm, that depends310

only on the knowledge of proxf and proxg, allowing to compute numerically an element311

of proxf
g (x) for all x ∈ D(proxf

g ). We refer to Algorithm (A1) in Theorem 3.3.312

Moreover, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, it follows from313

Theorem 2.7 that Algorithm (A1) is a one-loop algorithm allowing to compute nu-314

merically proxf+g(x) for all x ∈ H with the only knowledge of proxf and proxg.315

Theorem 3.3. Let f , g ∈ Γ0(H) and let x ∈ D(proxf
g ) be fixed. Then, Algorithm (A1)316

given by317

(A1)

{
y0 ∈ H,

yk+1 = T f,g(x, yk),

318

weakly converges to an element y∗ ∈ proxf
g (x). Moreover, if the additivity condition319

∂(f + g) = ∂f + ∂g is satisfied, it holds that proxf (y∗) = proxf+g(x).320

Proof. From Lemma 3.1, T f,g(x, ·) coincides with the composition of two firmly non-321

expansive operators, and thus of two non-expansive and 1
2 -averaged operators (see [2,322

Remark 4.24(iii) p.68]). Since x ∈ D(proxf
g ), it follows from Proposition 3.2 and323

Lemma 3.1 that Fix(proxg∗◦Lx
◦ proxf∗) 6= ∅. We conclude from [2, Theorem 5.22324

p.82] that Algorithm (A1) weakly converges to a fixed point y∗ of T f,g(x, ·). From325

Proposition 3.2, it holds that y∗ ∈ proxf
g (x). Finally, if the additivity condition326

∂(f + g) = ∂f + ∂g is satisfied, we conclude that proxf (y∗) = proxf+g(x) from327

Theorem 2.7.328

Remark 3.4. Let f , g ∈ Γ0(H) and let x ∈ D(proxf
g ). Algorithm (A1) consists in a

fixed-point algorithm from the characterization given in Proposition 3.2 by

proxf
g (x) = Fix(T f,g(x, ·)).

Actually, one can easily see that Algorithm (A1) also coincides with the well-known
Forward-Backward algorithm (see [7, Section 10.3 p.191] for details) from the charac-
terization given in Proposition 3.2 by

proxf
g (x) = argmin (Mf∗ + g∗ ◦ Lx).

Indeed, we recall that Mf∗ is differentiable with ∇Mf∗ = proxf . We also refer to329

Section 4.1 for a brief discussion about the Forward-Backward algorithm.330
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Let f , g ∈ Γ0(H). As mentioned in the introduction, no proximal algorithm xn+1 =331

proxf+g(xn), using only the knowledge of proxf and proxg, has been provided in the332

literature. This remains a very interesting open challenge in the literature. However,333

we will introduce now the notion of proximal-like algorithm (see Definition 3.5) and334

we will provide in Remark 3.7 such a proximal-like algorithm xn+1 = proxf+g(xn)335

requiring only the knowledge of proxf and proxg.336

Definition 3.5 (Proximal-like algorithm). Let g ∈ Γ0(H). An algorithm is said to337

be a proximal-like algorithm xn+1 = proxg(xn) if it can be written as338 

x0 ∈ H,

xn+1 = P1(y∗n),

where y∗n is given by solving a weakly

convergent auxiliary subalgorithm{
yn,0 ∈ H,

yn,k+1 = P2(xn, yn,k),

339

where P1 : H→ H and P2 : H×H→ H are two given operators satisfying

P1(Fix(P2(x, ·))) = proxg(x),

for all x ∈ H.340

Remark 3.6. In contrary to the classical proximal, Douglas-Rachford and Forward-341

Backward algorithms, it should be noted that a proximal-like algorithm is a two-loops342

algorithm.343

Remark 3.7. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g. From Theorem 2.7,344

Proposition 3.2 and Theorem 3.3, Algorithm (A2) given by345

(A2)



x0 ∈ H,

xn+1 = proxf (y∗n),

where y∗n is given by solving the weakly

convergent auxiliary subalgorithm{
yn,0 ∈ H,

yn,k+1 = T f,g(xn, yn,k),

346

is a proximal-like algorithm xn+1 = proxf+g(xn) that only requires the knowledge347

of proxf and proxg.348

Remark 3.8. As mentioned in the introduction, the aim of the present theoretical pa-349

per is not to discuss numerical experiments and comparisons between numerical algo-350

rithms (this should be the topic of future works). However, in contrary to the classical351

Douglas-Rachford algorithm, it should be noted that Algorithm (A2) is a two-loops352

algorithm. As a consequence, it should not be expected from Algorithm (A2) bet-353

ter performances than the Douglas-Rachford algorithm for solving the minimization354

problem argmin f + g.355

3.3. An additional result on the Douglas-Rachford operator. Let f , g ∈
Γ0(H). It is well-known in the literature (and it can be easily proved) that

proxf (Fix(Tf,g)) ⊂ argmin f + g.
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Our aim in this section is to prove, with the help of Theorem 2.7, that the opposite356

inclusion holds true under the additivity condition ∂(f + g) = ∂f + ∂g. To the best357

of our knowledge, this result is new in the literature.358

Lemma 3.9. Let f , g ∈ Γ0(H). It holds that

Fix(Tf,g) = Fix(proxf
g ◦ proxf ).

Proof. Let z ∈ H. It holds from Proposition 3.2 that359

z ∈ Fix(Tf,g)⇐⇒ z = Tf,g(z) = T f,g(proxf (z), z)360

⇐⇒ z ∈ Fix(T f,g(proxf (z), ·)) = proxf
g (proxf (z))361

⇐⇒ z ∈ Fix(proxf
g ◦ proxf ).362

The proof is complete.363

Proposition 3.10. Let f , g ∈ Γ0(H) such that ∂(f + g) = ∂f + ∂g. It holds that

argmin f + g = proxf (Fix(Tf,g)).

Proof. Let y ∈ Fix(Tf,g). Then y ∈ Fix(proxf
g ◦ proxf ) from Lemma 3.9. Thus364

y ∈ proxf
g ◦ proxf (y). From Theorem 2.7, we get that proxf (y) = proxf+g(proxf (y))365

and thus proxf (y) ∈ argmin f + g.366

Let x ∈ argmin f + g. Since D(proxf
g ) = H from Proposition 2.4, let us consider367

y ∈ proxf
g (x). From Theorem 2.7, it holds that x = proxf+g(x) = proxf (y). Let368

us prove that y ∈ Fix(Tf,g). Since y ∈ proxf
g (x) = Fix(T f,g(x, ·)), we get that369

y = T f,g(x, y) = T f,g(proxf (y), y) = Tf,g(y). The proof is complete.370

4. Some other applications and forthcoming works. This section can be371

seen as a conclusion of the paper. Its aim is to provide a glimpse of some other appli-372

cations of our main result (Theorem 2.7) and to raise open questions for forthcoming373

works. This section is splitted into two parts.374

4.1. Relations with the classical Forward-Backward operator. Let f ,375

g ∈ Γ0(H) such that g is differentiable on H. In that situation, note that the additivity376

condition ∂(f + g) = ∂f + ∂g is satisfied from Remark 2.5, and that Proposition 2.17377

implies that proxf
g is single-valued.378

In that framework, the classical Forward-Backward operator Ff,g : H→ H associated
to f and g is usually defined by

Ff,g(y) := proxf (y −∇g(y)),

for all y ∈ H. We refer to [7, Section 10.3 p.191] for more details. Let us introduce
the extension Ff,g : H×H→ H defined by

Ff,g(x, y) := proxf (x−∇g(y)),

for all x, y ∈ H. In particular, it holds that Ff,g(y) = Ff,g(y, y) for all y ∈ H. The379

following result follows from Theorem 2.7.380

Proposition 4.1. Let f , g ∈ Γ0(H) such that g is differentiable on H. Then

proxf+g(x) = Fix(Ff,g(x, ·)),

for all x ∈ H.381
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Proof. Let x ∈ H. Firstly, let z = proxf+g(x) and let y = proxf
g (x). In particular, we382

have x = y+∇g(proxf (y)). From Theorem 2.7, we get that z = proxf (y) = proxf (x−383

∇g(proxf (y))) = proxf (x − ∇g(z)) = Ff,g(x, z). Conversely, let z ∈ Fix(Ff,g(x, ·)),384

that is, z = proxf (x−∇g(z)). Considering y = x−∇g(z), we have z = proxf (y) and385

thus x = y +∇g(proxf (y)), that is, y = proxf
g (x). Finally, from Theorem 2.7, we get386

that z = proxf ◦ proxf
g (x) = proxf+g(x).387

From Proposition 4.1, we retrieve the following classical result.388

Proposition 4.2. Let f , g ∈ Γ0(H) such that g is differentiable on H. Then

argmin f + g = Fix(Ff,g).

Proof. Let x ∈ H. It holds that389

x ∈ argmin f + g ⇐⇒ x = proxf+g(x)390

⇐⇒ x ∈ Fix(Ff,g(x, ·))391

⇐⇒ x = Ff,g(x, x) = Ff,g(x)392

⇐⇒ x ∈ Fix(Ff,g).393

The proof is complete.394

Let f , g ∈ Γ0(H) such that g is differentiable on H. The classical Forward-Backward395

algorithm xn+1 = Ff,g(xn) is a powerful tool since it provides a one-loop algorithm,396

only requiring the knowledge of proxf and ∇g, that weakly converges (under some397

conditions on g, see [2, Section 27.3 p.405] for details) to a fixed point of Ff,g, and398

thus to a minimizer of f + g.399

From Proposition 4.1, and for all x ∈ H, one can consider the one-loop algorithm400

(potentially weakly convergent) given by401

(A3)

{
y0 ∈ H,

yk+1 = Ff,g(x, yk),

402

in order to compute numerically proxf+g(x), with the only knowledge of proxf and∇g.403

Finally, one can also consider the two-loops algorithm404

(A4)



x0 ∈ H,

xn+1 = y∗n,

where y∗n is given by solving the auxiliary subalgorithm{
yn,0 ∈ H,

yn,k+1 = Ff,g(xn, yn,k),

405

as a potential proximal-like algorithm xn+1 = proxf+g(xn), using only the knowledge406

of proxf and ∇g.407

Convergence proofs (under some assumptions on f and g) and numerical experiments408

of Algorithms (A3) and (A4), and eventually comparisons with other known algo-409

rithms in the literature, should be the subject of future works.410

4.2. Application to sensitivity analysis for variational inequalities. As411

a conclusion of the present paper, we return back to our initial motivation, namely412

the sensitivity analysis, with respect to a nonnegative parameter t ≥ 0, of some413
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parameterized linear variational inequalities of second kind in a real Hilbert space H.414

More precisely, for all t ≥ 0, we consider the variational inequality which consists of415

finding u(t) ∈ K such that416

〈u(t), z − u(t)〉+ g(z)− g(u(t)) ≥ 〈r(t), z − u(t)〉,417

for all z ∈ K, where K ⊂ H is a nonempty closed and convex set of constraints, and
where g ∈ Γ0(H) and r : R+ → H are assumed to be given. Note that the above
problem admits a unique solution given by

u(t) = proxf+g(r(t)),

where f = ιK is the indicator function of K.418

Our aim is to provide from Theorem 2.7 a simple and compact formula for the deriva-419

tive u′(0) under some assumptions (see Proposition 4.3 for details). Following the idea420

of F. Mignot in [17] (see also [13, Theorem 2 p.620]), we first introduce the following421

sets422

Ov := {w ∈ H | ∃λ > 0, projK(v) + λw ∈ K} ∩ [v − projK(v)]
⊥
,423

Cv := cl
(
{w ∈ H | ∃λ > 0, projK(v) + λw ∈ K}

)
∩ [v − projK(v)]

⊥
,424

for all v ∈ H, where ⊥ denotes the classical orthogonal of a set.425

Proposition 4.3. Let v(t) := r(t)−∇g(u(t)) for all t ∈ R. If the following assertions426

are satisfied:427

(i) r is differentiable at t = 0;428

(ii) g is twice differentiable on H;429

(iii) Ov(0) is dense in Cv(0);430

(iv) u is differentiable at t = 0;431

then the derivative u′(0) is given by

u′(0) = proxϕf+ϕg
(r′(0)),

where ϕf := ιCv(0)
and ϕg(x) := 1

2 〈D
2g(u(0))(x), x〉 for all x ∈ H.432

Proof. Note that v is differentiable at t = 0 with

v′(0) = r′(0)−D2g(u(0))(u′(0)).

Note that proxf
g is single-valued from Proposition 2.17 and Remark 2.5. From Theo-

rem 2.7, one can easily obtain that

v(t) = proxf
g (r(t)), and thus u(t) = proxf ◦ proxf

g (r(t)) = projK(v(t)),

for all t ≥ 0. Since Ov(0) is dense in Cv(0), we use the asymptotic development
of F. Mignot [17, Theorem 2.1 p.145] and we obtain that

u′(0) = projCv(0)
(v′(0)).

We deduce that
v′(0) + D2g(u(0)) ◦ projCv(0)

(v′(0)) = r′(0).

Since g is convex and since Cv(0) is a nonempty closed convex subset of H, we deduce

that ϕf , ϕg ∈ Γ0(H). Moreover ∂(ϕf +ϕg) = ∂ϕf +∂ϕg from Remark 2.5 and prox
ϕf
ϕg
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is single-valued from Proposition 2.17. It also should be noted that ∇ϕg = D2g(u(0)).
As a consequence, we have obtained that

v′(0) +∇ϕg ◦ proxϕf
(v′(0)) = r′(0),

that is, v′(0) = prox
ϕf
ϕg (r′(0)). We conclude the proof from the equality u′(0) =433

proxϕf
(v′(0)) and from Theorem 2.7.434

Remark 4.4. Proposition 4.3 provides an expression of u′(0) in terms of the proximity435

operator of a sum of two closed and convex functions. Hence, it could be numerically436

computed from Algorithm (A1), requiring the knowledge of projCv(0)
and proxϕg

.437

Alternatively, if the convergence is proved, one can also consider Algorithm (A3)438

requiring the knowledge of projCv(0)
and ∇ϕg = D2g(u(0)).439

Remark 4.5. The relaxations in special frameworks of the assumptions of Proposi-440

tion 4.3 should be the subject of future works. In particular, it would be relevant to441

provide sufficient conditions on K and g ensuring that u is differentiable at t = 0.442

The application of Proposition 4.3 in the context of some shape optimization problems443

with unilateral contact and friction is the subject of a forthcoming research paper444

(work in progress).445
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