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On the proximity operator of the sum of two closed and convex functions *

SAMIR ADLY', LOIC BOURDINY, AND FABIEN CAUBET?$

Abstract. The main result of this paper provides an explicit decomposition of the proximity
operator of the sum of two closed and convex functions. For this purpose, we introduce a new oper-
ator, called f-proximity operator, generalizing the classical notion. After providing some properties
and characterizations, we discuss the relations between the f-prozimity operator and the classical
Douglas-Rachford operator. In particular we provide a one-loop algorithm allowing to compute nu-
merically this new operator, and thus the proximity operator of the sum of two closed and convex
functions. Finally we illustrate the usefulness of our main result in the context of sensitivity analysis
of linear variational inequalities of second kind in a Hilbert space.
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ward operator, sensitivity analysis, variational inequality.

AMS subject classifications. 46N10, 47N10, 49J40, 49Q12

1. Introduction, notations and basics.

1.1. Introduction. The prozimity operator of a proper, closed, convex and
extended-real-valued function was first introduced by J.-J. Moreau in 1965 in [18]
and can be viewed as an extension of the projection operator on a closed and con-
vex subset of a Hilbert space. This wonderful tool plays an important role, from
both theoretical and numerical points of view, in convex optimization problems (see,
e.g., [5, 16, 20, 22]), inverse problems (see, e.g., [4, 6]), signal processing (see, e.g., [8]),
etc. We also refer to [7, 12] and references therein. For the rest of this introduction,
we use standard notations of convex analysis. For the reader who is not acquainted
with convex analysis, we refer to Section 1.2 for notations and basics.

Motivations from a sensitivity analysis. The present paper was initially
motivated by the sensitivity analysis, with respect to a nonnegative parameter ¢t > 0, of
some parameterized linear variational inequalities of second kind in a Hilbert space H,
with a corresponding functional denoted by h € T'o(H). In that framework, the
solution u(t) € H (that depends on the parameter t) can be expressed in terms of
the proximity operator of h denoted by prox;. As a consequence, the differentiability
of u(-) at ¢ = 0 is strongly related to the regularity of prox,. If h is a smooth
functional, one can easily compute (from the classical implicit function theorem for
instance) the differential of prox;,, and then the sensitivity analysis can be achieved.
In that smooth case, note that the variational inequality can actually be reduced to an
equality. On the other hand, if h = tk is the indicator function of a nonempty closed
and convex subset K of H, then prox; = projk is the classical projection operator
on K. In that case, a result of F. Mignot (see [17, Theorem 2.1 p.145], see also [13,
Theorem 2 p.620]) provides an asymptotic development of prox;, = projk and permits
to obtain a differentiability result on u(-) at t = 0.

In a parallel work (in progress) of the authors on some shape optimization problems
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2 S. ADLY, L. BOURDIN, AND F. CAUBET

with unilateral contact and friction, the considered variational inequality involves the
sum of two functions, that is, h = f 4+ ¢g where f = 1k is the indicator function
of a nonempty closed and convex set of constraints K, and g € I'o(H) is a smooth
functional (derived from the regularization of the friction functional in view of a
numerical treatment). Despite the regularity of g, note that the variational inequality
here cannot be reduced to an equality due to the presence of the constraint set K.
In that framework, in order to get an asymptotic development of prox;, = prox;,
a first and natural strategy would be to develop a splitting method, looking for an
explicit expression of prox;, , depending only on the knowledge of prox; and prox,.
Unfortunately, this question still remains an open challenge in the literature. Let us
mention that Y.-L. Yu provides in [24] some necessary and/or sufficient conditions on
general functions f, g € I'o(H) under which prox;, , = prox; o prox,. Unfortunately,
these conditions are very restrictive and are not satisfied in most of cases.

Before coming to the main topic of this paper, we recall that a wide literature is
already concerned with the sensitivity analysis of parameterized (linear and nonlinear)
variational inequalities. We refer for instance to [3, 13, 19, 23] and references therein.
The results in there are considered in very general frameworks. We precise that our
original objective was to look for a simple and compact formula for the derivative u’(0)
in the very particular case described above, that is, in the context of a linear variational
inequality and with h = f + ¢ where f is an indicator function and g is a smooth
functional. For this purpose, we were led to consider the proximity operator of the
sum of two proper closed and convex functions, to introduce a new operator and
finally to prove the results presented in this paper.

Introduction of the f-proximity operator and main result. Let us con-
sider general functions f, g € T'o(H). Section 2 is devoted to the introduction (see
Definition 2.1) of a new operator denoted by proxg , called f-prozimity operator of g
and defined by

proxg = (I+dgo proxf)_1 .

We prove that its domain satisfies D(prox{;) = H if and only if 9(f +¢g) = 0f + 9g
(see Proposition 2.4), and that proxg can be seen as a generalization of prox, in
the sense that, if f is constant for instance, then proxg = prox,. More general
sufficient (and necessary) conditions under which proxg = prox, are provided in
Propositions 2.11 and 2.14. Note that proxg : H = H is a priori a set-valued operator.

We provide in Proposition 2.17 some sufficient conditions under which proxg is single-
valued. Some examples illustrate all the previous results throughout the section (see
Examples 2.2, 2.3, 2.6 and 2.16).

Finally, if the additivity condition d(f + g) = 0f + Og is satisfied, the main result of
the present paper (see Theorem 2.7) provides the equality

prox;, = proxy o proxg.

Theorem 2.7 allows to prove in a simple and concise way almost all other results of
this paper, making it central in our work.

Relations with the classical Douglas-Rachford operator and algorithms.
Recall that the proximity operator prox;,, is strongly related to the minimization
problem

argmin f + g,
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ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 3

since the solutions are exactly the fixed points of prox;, . In the sequel, we will
assume that the above problem admits at least one solution. In most of cases, prox; ,
cannot be easily computable, even if prox, and prox, are known. As a consequence,
to the best of our knowledge, no prozimal algorithm x,11 = prox;, (), using only
the knowledge of prox; and prox,, has been provided in the literature.

The classical Douglas-Rachford operator, introduced in [9] and denoted by Ty, (see
Section 3 for details), provides an algorithm z, 41 = Ty,4(x,) that is weakly convergent
to some x* € H satisfying

prox;(z*) € argmin f + g.

Even if the Douglas-Rachford algorithm is not a proximal algorithm in general, it
is a very powerful tool since it is a one-loop algorithm, allowing to solve the above
minimization problem, that only requires the knowledge of prox; and prox,. We refer
to [10, 15] and [2, Section 27.2 p.400] for more details.

Section 3 deals with the relations between the Douglas-Rachford operator 7T¢, and
the f-proximity operator proxg introduced in this paper. Precisely, for all x € H,
we prove in Proposition 3.2 that proxg (x) coincides with the set of fixed points
of Tyg4(z,-), where T q(x,-) denotes a x-dependent generalization of the classi-
cal Douglas-Rachford operator 7;,. We refer to Section 3 for the precise defi-
nition of 7 4(z,-) that only depends on the knowledge of prox; and prox,. In
particular, if x € D(proxg), we prove in Theorem 3.3 that the fixed-point algo-
rithm y41 = T f,4(2, yx), denoted by (A;), weakly converges to some y* € proxg (z).

Moreover, if the additivity condition 9(f + g) = 9f + Og is satisfied, we get from
Theorem 2.7 that prox;(y*) = prox;, (). In that situation, we conclude that Algo-
rithm (\A;) is a one-loop algorithm, that depends only on the knowledge of prox 5 and
prox,, allowing to compute numerically prox;, , ().

As a consequence, a prozimal-like algorithm x,.1 = prox;,  (z,), denoted by (As),
using only the knowledge of prox; and prox,, can be derived in the above framework
(see Remark 3.7). We refer to Definition 3.5 for the precise meaning of prozimal-like
algorithm.

The aim of the present theoretical paper is not to discuss numerical experiments and
comparisons between numerical algorithms (this should be the topic of future works).
However, it should be noted that, in contrary to the classical Douglas-Rachford algo-
rithm, a proximal-like algorithm is a two-loops algorithm. As a consequence, it should
not be expected from Algorithm (Ag) better performances than the Douglas-Rachford
algorithm for solving the minimization problem argmin f + g.

Some other applications and forthcoming works. Section 4 can be seen as
a conclusion of the paper. Its aim is to provide a glimpse of some other applications
of our main result (Theorem 2.7) and to raise open questions for forthcoming works.
This section is splitted into two parts.

In Section 4.1 we consider the framework where f, g € T'o(H) with g differentiable
on H. In that framework, we prove from Theorem 2.7 that prox; . is related to the
classical Forward-Backward operator (see [7, Section 10.3 p.191] for details) denoted
by Fy 4. Precisely, for all z € H, we prove in Proposition 4.1 that prox; (=) coincides
with the set of fixed points of F¢ 4(z,-), where Ff 4(z,-) denotes a z-dependent gen-
eralization of the classical Forward-Backward operator F;,. We refer to Section 4.1
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4 S. ADLY, L. BOURDIN, AND F. CAUBET

for the precise definition of Fy4(z,-) that only depends on the knowledge of prox;
and Vg. From this point, one can develop a similar strategy as in Section 3. Precisely,
for all z € H, one can consider the one-loop algorithm yx11 = ?fyg (z,yr), denoted
by (As), in order to compute numerically Prox; +g(ac), with the only knowledge of
prox; and Vg. Moreover, one can also deduce a two-loops algorithm denoted by (.A4)
as a potential proximal-like algorithm z,,11 = prox; ,(7,), using only the knowledge
of prox; and Vg. Convergence proofs (under some assumptions on f and g) and
numerical experiments of Algorithms (As) and (A4) should be the topic of future
works.

In Section 4.2 we return back to our initial motivation, namely the sensitivity anal-
ysis, with respect to a nonnegative parameter ¢ > 0, of some parameterized linear
variational inequalities of second kind. Precisely, under some assumptions (see Propo-
sition 4.3 for details), we derive from Theorem 2.7 that if

u(t) = prOXerg (T(t))v

where f = tx (where K is a nonempty closed convex set) and where g € T'o(H) is a
smooth enough functional, then

ul(o) = pI‘Ochf_Hag (TJ(O))7

where ¢ := 1c (where C is a nonempty closed convex subset of H related to K)
and where ¢g(z) := 2(D?g(u(0))(z),z) for all z € H. We refer to Proposition 4.3
for details. It should be noted that the assumptions of Proposition 4.3 are quite
restrictive, raising open questions about their relaxations (see Remark 4.5). This also
should be the subject of a forthcoming work.

1.2. Notations and basics. In this section we introduce some notations avail-
able throughout the paper and we recall some basics of convex analysis. We refer to
standard books like [2, 14, 21] and references therein.

Let H be a real Hilbert space and let (-,-) (resp. || -||) be the corresponding scalar
product (resp. norm). For all subset S of H, we denote respectively by int(S) and cl(.5)
its interior and its closure. In the sequel we denote by I : H — H the identity
application and by L, : H — H the affine operator defined by

Lo(y) =z -y,
for all z, y € H.
For a set-valued map A : H = H, the domain of A is given by

D(A):={x e H| A(z) # 0}.
We denote by A~! : H = H the set-valued map defined by
AT y) = {z e H|y € Az)},

for all y € H. Note that y € A(z) if and only if z € A~!(y), for all z, y € H. The
range of A is given by

R(A):={y e H| A7} (y) # 0} = D(A™).
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ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 5

We denote by Fix(A) the set of all fixed points of A, that is, the set given by
Fix(A):={z € H|z € A(z)}.

Finally, if A(z) is a singleton for all € D(A), we say that A is single-valued.

For all extended-real-valued functions g : H — RU {400}, the domain of g is given by
dom(g) :={zr € H| g(z) < +o0}.

We say that g is proper if dom(g) # 0, and that g is closed (or lower semi-continuous)

if its epigraph is a closed subset of H x R.

Let ¢ : H —» R U {400} be a proper extended-real-valued function. We denote

by ¢* : H— R U {+00} the conjugate of g defined by

g (y) = sup {{y,2) —g9(2)},

for all y € H. Recall that g* is closed and convex.

We denote by T'g(H) the set of all extended-real-valued functions g : H — R U {400}
that are proper closed and convex. If g € T'g(H), recall that g* € To(H). The Fenchel-
Moreau equality is given by g** = g. For all g € I'o(H), we denote by dg : H = H the
Fenchel-Moreau subdifferential of g defined by

dg(w) :={y e H|(y,z —z) < g(2) — g(x), Yz € H},

for all x € H. It is easy to check that Jg is a monotone operator and that, for
all z € H, 0 € 9g(z) if and only if 2 € argmin g. Moreover, for all z, y € H, it holds
that y € dg(z) if and only if z € 9g*(y). Recall that, if g is differentiable on H,
then dg(z) = {Vg(z)} for all z € H.

Let A : H — H be a single-valued operator defined everywhere on H, and let g € T'q(H).
We denote by VI(A, g) the variational inequality which consists of finding y € H such
that

—A(y) € 99(y),

or equivalently,

(A(y),z —y) +9(2) —g(y) >0,

for all z € H. Then we denote by Solyi(A4,g) the set of solutions of VI(A4,g). Re-
call that if A is Lipschitzian and strongly monotone, then VI(A4, g) admits a unique
solution, i.e. Solyi(A,g) is a singleton.

Let g € T'o(H). The classical proxzimity operator of g is defined by
prox, := (I + dg)~ L.

Recall that prox, is a single-valued operator defined everywhere on H. Moreover, it
can be characterized as follows:

1
prox,(z) = argmin (g + 5| —al|*) = Solvi(~La,9).
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6 S. ADLY, L. BOURDIN, AND F. CAUBET

for all z € H. It is also well-known that
Fix(prox,) = argmin g.

The classical Moreau’s envelope My : H — R of g is defined by

. 1
M, (@) = min (g + 5| - =),

for all € H. Recall that M, is convex and differentiable on H with VM, = prox,..
Let us also recall the classical Moreau’s decompositions

1 2
prox, + prox,. =1 and My + Mg~ = 5” <17

Finally, it is well-known that if g = tk is the indicator function of a nonempty closed
and convex subset K of H, that is, tx(x) = 0 if 2 € K and tx(x) = 400 if not,
then prox, = projg, where proji denotes the classical projection operator on K.

2. The f-proximity operator.

2.1. Main result. Let f, g € T'o(H). In this section we introduce (see Def-
inition 2.1) a new operator denoted by proxgic , generalizing the classical proximity
operator prox,. Under the additivity condition O(f + g) = 9f + dg, we prove in
Theorem 2.7 that prox; , can be written as the composition of prox; with proxg}c .

DEFINITION 2.1 (f-proximity operator). Let f, g € I'o(H). The f-prozimity operator
of g is the set-valued map proxg :H = H defined by

proxg :=(I+09go proxf)_l.

Note that proxg can be seen as a generalization of prox, since proxy = prox, for all
constant ¢ € R.

Ezample 2.2. Let us assume that H = R. We consider f = ¢_; 1) and g(z) = |z| for
all z € R. In that case we obtain that dg o prox; = dg and thus proxg = prox,.

Example 2.2 provides a simple situation where proxg = prox, while f is not constant.
We provide in Propositions 2.11 and 2.14 some general sufficient (and necessary)
conditions under which proxg = prox,.

Example 2.3. Let us assume that H = R. We consider f = t{oy and g(x) = |z| for
all z € R. In that case we obtain that dg o prox;(z) = [~1,1] for all z € R. As
a consequence proxg(ac) =[x — 1,2+ 1] for all x € R. See Figure 1 for graphic
representations of prox, and prox_{; in that case.

Example 2.3 provides a simple illustration where proxi.,c is not single-valued. In
particular it follows that proxg cannot be written as a proximity operator prox,
with ¢ € I'o(H). We provide in Proposition 2.17 some sufficient conditions under
which proxg is single-valued. Moreover, Example 2.3 provides a simple situation

where dg o prox; is not a monotone operator. As a consequence, it may be possible
that D(prox_{;) G H. In the next proposition, a necessary and sufficient condition
under which D(proxg ) = H is derived.

PROPOSITION 2.4. Let f, g € I'o(H). It holds that D(proxg) = H if and only if the
additivity condition

(1) o(f +g)=0f + 0y,
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is satisfied.

Proof. We first assume that 9(f + g) = 0f + 9g9. Let z € H. Defining w =
prox;, ,(x) € H, we obtain that x € w + 9(f + g)(w) = w + df(w) + dg(w). Thus,
there exist wy € Of(w) and w, € Og(w) such that z = w + wy + w,. We de-
fine y = w +wy € w+ df(w). In particular we have w = prox;(y). Moreover we
obtain x = y +w, € y + dg(w) = y + dg(prox;(y)). We conclude that y € proxg; (z).

Without any additional assumption and directly from the definition of the subdiffer-
ential, one can easily see that the inclusion 9 f(w) + dg(w) C A(f + g)(w) is always
satisfied for every w € H. Now let us assume that D(proxg ) = H. Let w € H and
let z € O(f + g)(w). We consider z = w+ 2z € w+ 9(f + ¢g)(w). In particular it holds
that w = prox;, ,(z). Since D(prox}) = H, there exists y € prox/(z) and thus it
holds that 2 € y+ dg(prox;(y)). Moreover, since y € prox,(y) +0f(prox,(y)), we get

that = € prox;(y) + 9f(prox;(y)) + dg(prox;(y)) C prox;(y) + (f + g)(prox;(y)).
Thus it holds that prox;(y) = prox;,,(r) = w. Moreover, since x € prox,(y) +

Of (prox;(y)) +dg(prox(y)), we obtain that = € w+df(w) +dg(w). We have proved
that z =2 —w € df(w) + dg(w). This concludes the proof. |

In most of the present paper, we will assume that Condition (1) is satisfied. It is not
our aim here to discuss the weakest qualification condition ensuring Condition (1). A
wide literature already deals with this topic (see, e.g., [1, 11, 20]). However, we recall
in the following remark the classical sufficient condition of Moreau-Rockafellar under
which Condition (1) holds true (see, e.g., [2, Corollary 16.38 p.234]), and we provide
a simple example where Condition (1) does not holds and D(proxg; ) ¢ H.

Remark 2.5 (Moreau-Rockafellar theorem). Let f, g € To(H) such that dom(f) N
int(dom(g)) # 0. Then O(f + g) = df + dg.

Ezample 2.6. Let us assume that H = R. We consider f = (g- and g(x) = g (x)—\/a?
for all z € R. In that case, one can easily check that 9f(0) + 9g(0) = 0 & R =
d(f +9)(0) and D(prox]) =0 ¢ H.

We are now in position to state and prove the main result of the present paper.
THEOREM 2.7. Let f, g € To(H) such that O(f + g) = 0f + 0g. It holds that

ProX;, = prox; o proxg.

In other words, for every x € H, we have prox;,  (x) = prox(z) for all z € proxg(x).

Proof. Let x € H and let y € proxg(x) constructed as in the first part of the proof of

Proposition 2.4. In particular it holds that prox;(y) = prox;, ,(z). Let z € proxglc (z).
We know that x —y € dg(prox;(y)) and x —z € dg(prox;(z)). Since dg is a monotone
operator, we obtain that

((z —y) — (z — z), prox;(y) — prox;(z)) = 0.

From the cocoercivity (see [2, Definition 4.4 p.60]) of the proximity operator, we
obtain that

0> (y — z,prox(y) — prox;(z)) > [[prox;(y) — prox,(2)||* > 0.

We deduce that prox;(z) = prox;(y) = prox;, ,(z). The proof is complete. d

Remark 2.8. Let f, g € To(H) such that d(f + g) = 0f + dg and let x € H. The-
orem 2.7 states that, even if proxg (z) is not a singleton, all elements of proxg (x)
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8 S. ADLY, L. BOURDIN, AND F. CAUBET

has the same value through the proximity operator prox;, and this value is equal
to prox; (7).

Remark 2.9. Note that the additivity condition 9(f + g) = df + Jg is not only suf-
ficient, but also necessary for the validity of the equality prox,,, = prox; o proxg.
Indeed, from Proposition 2.4, if 0f + dg & O(f + ¢g), then there exists 2 € H such that
proxg (z) = 0 and thus prox;, ,(x) # prox; o proxg(x).

Remark 2.10. Let f, g € To(H) such that 9(f + ¢g) = df + 9¢g. From Theorem 2.7, we
deduce that R(prox;, ,) C R(prox;)NR(prox,). If the additivity condition d(f +g) =
df + Jg is not satisfied, this remark does not hold true anymore. Indeed, with the
framework of Example 2.6, we have R(prox;,,) = {0} while 0 ¢ R(prox,).

2.2. Additional results. Let f, g € T'o(H). We know that proxg is a gener-
alization of prox, in the sense that prox_{; = prox, if f is constant for instance. In
the next proposition, our aim is to provide more general sufficient (and necessary)
conditions under which proxg = prox,. We will base our discussion on the following
conditions:

(2) Ve e H, dg(z)C (“)g(proxf(x)),

(3) Voz € H, 0g(prox;(x)) C dg(x).

Note that Condition (2) has been introduced by Y.-L. Yu in [24] as a sufficient con-
dition under which prox;, , = prox; o prox,.
PROPOSITION 2.11. Let f, g € To(H).

(i) If Condition (2) is satisfied, then prox,(z) € proxg(x) for all x € H.

(ii) If Conditions (1) and (3) are satisfied, then prox](x) = prox,(z) for all

r e H.

In both cases, it holds that prox, , = prox; o prox,.
Proof. Let x € H. If Condition (2) is satisfied, considering y = prox,(r), we get
that = € y + dg(y) C y + dg(prox;(y)) and thus y € prox/ (z). In particular, it holds
that D(proxg) = H and thus 9(f + g) = 9f + dg from Proposition 2.4. On the other
hand, if Conditions (1) and (3) are satisfied, then D(proxg) = H from Proposition 2.4.
Considering y € proxg;(x), we get that = € y+0g(prox;(y)) C y+9dg(y) and thus y =
prox,(z). The last assertion of Proposition 2.11 directly follows from Theorem 2.7.0
Remark 2.12. From Proposition 2.11, we deduce that Condition (2) implies Condi-
tion (1).
In the first item of Proposition 2.11 and if proxglc is set-valued, we are in the situation
where prox, is a selection of proxg. Proposition 2.14 specifies this selection in the
case where O(f + g) = 0f + Jg.
LEMMA 2.13. Let f, g € T'o(H). Then prox_f;(x) is a monempty closed and convex
subset of H for all x € D(proxg).
Proof. The proof of Lemma 2.13 is provided after the proof of Proposition 3.2 (re-
quired). O

PROPOSITION 2.14. Let f, g € T'o(H) such that O(f + g) = 0f + Jg and let x € H.
If prox,(z) € prox/(z), then

prox, (z) = projpmxg(r) (proforg(:c)).

This manuscript is for review purposes only.
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ON THE PROXIMITY OPERATOR OF A SUM OF TWO CONVEX FUNCTIONS 9

Proof. If prox,(z) € proxéc (z), then z € D(proxg) and thus proxg(x) is a nonempty
closed and convex subset of H from Lemma 2.13. Let z € prox/(z). In par-
ticular we have prox;(z) = prox;, (z) from Theorem 2.7. Using the fact that
r — prox,(z) € dg(prox,(z)) and z — z € dg(prox;(z)) = dg(prox;, ,(z)) together
with the monotonicity of dg, we obtain that

(proforg(m) — proxg(m), z — prox, (2))
= (prox; ,(z) — prox,(z), (r — prox,(z)) — (z — 2)) < 0.
Since prox,(r) € proxgc (z), we conclude the proof from the classical characterization
of proj O

Remark 2.15. Let f = g,y with w € H and let g € T'g(H) such that w € int(dom(g)).
Hence the additivity condition 9(f +g) = 0f + g is satisfied from Remark 2.5. From
Remark 2.10 and since prox; = projy,,;, we easily deduce that R(proforg) = {w}.

prox’; (z)*

Let = € H such that prox,(z) € prox(z). From Proposition 2.14 we get that
prox,(r) = projpmxg(z)(w).

If moreover w = 0, we deduce that prox, () is the particular selection that corresponds
to the element of minimal norm in proxfgc (z) (also known as the lazy selection). The
following example is in this sense.

Example 2.16. Let us consider the framework of Example 2.3. In that case, Condi-
tions (1) and (2) are satisfied. We deduce from Proposition 2.11 that prox,(z) €
proxg (z) for all z € R. From Remark 2.15, we conclude that prox,(z) is exactly the
element of minimal norm in proxg (z) for all € R. This result is clearly illustrated
by the graphs of prox, and proxg provided in Figure 1.

Fic. 1. Examples 2.8 and 2.16, graph of prox, in bold line, and graph of proxg mn gray.

Let f, g € To(H) such that 9(f + g) = 8f + dg. From Theorem 2.7, one can easily
see that, if prox; is injective, then proxglc is single-valued. Since the injection of prox;
is too restrictive, other sufficient conditions under which proxi; is single-valued are
provided from Theorem 2.7 in the next proposition.
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PROPOSITION 2.17. Let f, g € To(H) such that O(f + g) = 0f + dg. If either Of
or g is single-valued, then proxg}c is single-valued.

Proof. Let * € H and let z1, zo € proxg(x). From Theorem 2.7, it holds that
prox;(z1) = prox;(z2) = proxs,,(x). If the operator df is single-valued, we ob-
tain that 21 = prox;,  (z) +df(prox;, ,(z)) = z2. If the operator Jg is single-valued,
we get x — z; = dg(prox;(z1)) = dg(prox;(22)) = = — 22 and thus z; = 2y. 0

3. Relations with the Douglas-Rachford operator. Let f, g € T'o(H). The
classical Douglas-Rachford operator T;, : H — H associated to f and g is usually
defined by

Tr9(y) ==y — prox;(y) + prox, (2prox;(y) — y),
for all y € H. We refer to [9, 10, 15] and to [2, Section 27.2 p.400] for more details.

One aim of this section is to study the relations between the f-proximity opera-
tor proxg introduced in this paper and the Douglas-Rachford operator 7y 4. For this
purpose, we introduce an extension 7},9 : HxH — H of the classical Douglas-Rachford

operator defined by
T 1,9(2,y) =1y — prox;(y) + prox,(z + prox;(y) — y),
for all z, y € H.

Note that Ty 4(y) = T r,4(prox;(y),y) for all y € H, and that the definition of T4
only depends on the knowledge of prox; and prox,.

3.1. Several characterizations of proxg;. Let f, g € To(H). In this section,
our aim is to derive several characterizations of proxg in terms of solutions of varia-

tional inequalities, of minimization problems and of fixed point problems (see Propo-
sition 3.2).

LEMMA 3.1. Let f, g € Do(H). It holds that
T-fvg(xa ) = ProXg«or, © PrOXy«,
for all x € H.

Proof. Let x € H. Lemma 3.1 directly follows from the equality proxg.,, = L; o
prox,. o L, (see [2, Proposition 23.29 p.342]) and from Moreau’s decompositions. 0O

PROPOSITION 3.2. Let f, g € To(H). It holds that
proxg(x) = Solyy(prox;, g* o L,) = argmin (M« + g% o L,) = Fix(T 1 4(z,)),
for all x € H.
Proof. In this proof we will use standard properties of convex analysis recalled in
Section 1.2. Let # € H. One can easily prove that d(¢* o L,) = —9dg* o L,. For
all y € H, it holds that
y € proxg(x) < x —y € dg(prox;(y))
<= prox;(y) € dg*(z — y)
> —prox;(y) € (9" © La)(y)-

Moreover, since dom(My+) = H and from Remark 2.5, we have

—prox(y) € 9(g9" o Ly)(y) <= 0 € VM- (y) +9(9" o Lz)(y)
=0 dMy + g% o L) (y).
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Finally,
—prox;(y) € d(g” o La)(y) <= prox;-(y) € y + 9(g" © La)(y)
= Y = PrOXg.op, © ProX . (y).
This concludes the proof from Lemma 3.1. ]

Proof of Lemma 2.13. Let x € D(proxg ). In particular prox{;(:r) is not empty. From
Proposition 3.2, we have

proxg(ac) = argmin (M- + g% o Lg).

Since My« + g* o L, € T'g(H), one can easily deduce that proxg(x) is closed and
convex. 0

3.2. A one-loop algorithm in order to compute proxg; numerically. Let
f, g € To(H). In this section, our aim is to derive a one-loop algorithm, that depends
only on the knowledge of prox; and prox,, allowing to compute numerically an element

of proxg(x) for all z € D(proxg). We refer to Algorithm (A;) in Theorem 3.3.
Moreover, if the additivity condition 9(f + g) = 9f + Og is satisfied, it follows from
Theorem 2.7 that Algorithm (A;) is a one-loop algorithm allowing to compute nu-
merically proxg, (z) for all x € H with the only knowledge of prox ¢ and prox,.

THEOREM 3.3. Let f, g € To(H) and let x € D(prox}) be fized. Then, Algorithm (A;)
given by

{ Yo S Ha
A _
1) Ukv1 =T 1.9(2,Yx),

weakly converges to an element y* € proxg(x). Moreover, if the additivity condition
O(f +g) = Of + 0g is satisfied, it holds that prox,(y*) = prox;, ().

Proof. From Lemma 3.1, T ¢ 4(x,-) coincides with the composition of two firmly non-
expansive operators, and thus of two non-expansive and %—averaged operators (see [2,
Remark 4.24(iii) p.68]). Since z € D(proxg), it follows from Proposition 3.2 and
Lemma 3.1 that Fix(prox ., o proxs.) # (). We conclude from [2, Theorem 5.22
p.82] that Algorithm (A;) weakly converges to a fixed point y* of T 4(z,-). From
Proposition 3.2, it holds that y* € prox_f; (z). Finally, if the additivity condition
O(f +g) = Of + 0g is satisfied, we conclude that prox;(y*) = prox;, (z) from
Theorem 2.7. ]

Remark 3.4. Let f, g € To(H) and let = € D(proxg). Algorithm (A;) consists in a
fixed-point algorithm from the characterization given in Proposition 3.2 by

prox_ﬁ]c (z) = Fix(T f,4(x, ).

Actually, one can easily see that Algorithm (A;) also coincides with the well-known
Forward-Backward algorithm (see [7, Section 10.3 p.191] for details) from the charac-
terization given in Proposition 3.2 by

proxg;(m) = argmin (M« + g% o Lg).

Indeed, we recall that Mg« is differentiable with VMg« = prox;. We also refer to
Section 4.1 for a brief discussion about the Forward-Backward algorithm.
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Let f, g € To(H). As mentioned in the introduction, no proximal algorithm z,; =
ProXs, (zr,), using only the knowledge of prox ¢ and prox,, has been provided in the
literature. This remains a very interesting open challenge in the literature. However,
we will introduce now the notion of prozimal-like algorithm (see Definition 3.5) and
we will provide in Remark 3.7 such a proximal-like algorithm z,,41 = prox,,  (z,)
requiring only the knowledge of prox; and prox,.

DEFINITION 3.5 (Proximal-like algorithm). Let g € T'o(H). An algorithm is said to
be a proximal-like algorithm x,1 = proxg(xn) if it can be written as
xo € H,
Tny1 = P1(yy),
where y;. s given by solving a weakly

convergent auziliary subalgorithm

Yn,0 € H,
{ Yn k1 = Po(Tn; Yn k),
where Py : H— H and P, : Hx H — H are two given operators satisfying
Py (Fix(Px(z,-))) = prox, (),
for all x € H.

Remark 3.6. In contrary to the classical proximal, Douglas-Rachford and Forward-
Backward algorithms, it should be noted that a proximal-like algorithm is a two-loops
algorithm.

Remark 3.7. Let f, g € To(H) such that 9(f + g) = 9f + dg. From Theorem 2.7,
Proposition 3.2 and Theorem 3.3, Algorithm (Az) given by

xo € H,
Tp4+1 = pI‘OXf(y;:),
where y is given by solving the weakly

convergent auxiliary subalgorithm

Yn,0 € Ha
Yn,k+1 = 77—]”,g(xn7 yn,k)7

is a proximal-like algorithm i1 = proxg +g(:lcn) that only requires the knowledge
of prox; and prox,.

Remark 3.8. As mentioned in the introduction, the aim of the present theoretical pa-
per is not to discuss numerical experiments and comparisons between numerical algo-
rithms (this should be the topic of future works). However, in contrary to the classical
Douglas-Rachford algorithm, it should be noted that Algorithm (Az) is a two-loops
algorithm. As a consequence, it should not be expected from Algorithm (As) bet-
ter performances than the Douglas-Rachford algorithm for solving the minimization
problem argmin f + g.

3.3. An additional result on the Douglas-Rachford operator. Let f, g €
To(H). It is well-known in the literature (and it can be easily proved) that

prox;(Fix(7y,4)) C argmin f + g.
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Our aim in this section is to prove, with the help of Theorem 2.7, that the opposite
inclusion holds true under the additivity condition d(f + g) = df + dg. To the best
of our knowledge, this result is new in the literature.

LEMMA 3.9. Let f, g € To(H). It holds that
Fix(T;4) = Fix(proxg o proxy).
Proof. Let z € H. It holds from Proposition 3.2 that

z € Fix(Tyq) <= 2 =T 4(2) = T'j',g(proxf(z), 2)
= z € Fix(T s 4(prox;(2),-)) = proxg(proxf (2))

=z € Fix(proxg o proxy).

The proof is complete. ]
PROPOSITION 3.10. Let f, g € To(H) such that O(f + g) = df + dg. It holds that

argmin f + g = prox; (Fix(Ty,g))-

Proof. Let y € Fix(T;4). Then y € Fix(proxg o proxy) from Lemma 3.9. Thus
y € prox] o prox;(y). From Theorem 2.7, we get that prox;(y) = prox; . ,(prox;(y))
and thus prox;(y) € argmin f + g.
Let x € argmin f + g. Since D(proxg) = H from Proposition 2.4, let us consider
y € prox/(z). From Theorem 2.7, it holds that x = prox;, ,(z) = prox;(y). Let
us prove that y € Fix(T;,). Since y € prox/(z) = Fix(Tf4(z,)), we get that
y= 7'f,g (z,y) = T'f,g(proxf(y), y) = T7,4(y). The proof is complete. 1]
4. Some other applications and forthcoming works. This section can be
seen as a conclusion of the paper. Its aim is to provide a glimpse of some other appli-

cations of our main result (Theorem 2.7) and to raise open questions for forthcoming
works. This section is splitted into two parts.

4.1. Relations with the classical Forward-Backward operator. Let f,
g € T'y(H) such that g is differentiable on H. In that situation, note that the additivity
condition O(f + g) = 0f + Jg is satisfied from Remark 2.5, and that Proposition 2.17
implies that proxg is single-valued.

In that framework, the classical Forward-Backward operator Fy 4 : H — H associated
to f and g is usually defined by

Fi.9(y) := prox;(y — Vg(y)),

for all y € H. We refer to [7, Section 10.3 p.191] for more details. Let us introduce
the extension F;,: H x H — H defined by

Frg(@,y) = prox;(z — Vg(y)),

for all z, y € H. In particular, it holds that Fy4(y) = Fs4(y,y) for all y € H. The
following result follows from Theorem 2.7.

PROPOSITION 4.1. Let f, g € To(H) such that g is differentiable on H. Then

proxf+g(x) = Fix(Fy4(z, ")),
for all x € H.
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Proof. Let x € H. Firstly, let z = prox;, ,(z) and let y = proxg(x). In particular, we
have x = y+Vg(prox;(y)). From Theorem 2.7, we get that 2z = prox;(y) = prox(z—

Vg(prox;(y))) = prox;(z — Vg(2)) = Ffg(x,2). Conversely, let z € Fix(Fj4(z,-)),
that is, z = prox;(z — Vg(z)). Considering y = x — Vg(z), we have z = prox,(y) and
thus x = y + Vg(prox;(y)), that is, y = proxg(m). Finally, from Theorem 2.7, we get
that z = prox; o proxg (z) = prox; (). d
From Proposition 4.1, we retrieve the following classical result.

PROPOSITION 4.2. Let f, g € To(H) such that g is differentiable on H. Then
argmin f + g = Fix(Fy ).
Proof. Let x € H. It holds that

r €argmin f+g<= = proxfﬂ](x)
< 1z € Fix(Fy4(z,-))
= x = Fry(z,2) = Ffq(x)
< x € Fix(Fy ).

The proof is complete. 0

Let f, g € To(H) such that g is differentiable on H. The classical Forward-Backward
algorithm xp41 = Fyg(xy,) is a powerful tool since it provides a one-loop algorithm,
only requiring the knowledge of prox; and Vg, that weakly converges (under some
conditions on g, see [2, Section 27.3 p.405] for details) to a fixed point of Fy 4, and
thus to a minimizer of f + g¢.

From Proposition 4.1, and for all x € H, one can consider the one-loop algorithm
(potentially weakly convergent) given by

yo € H,
(As) {

Yrer1 = F (2, ur),

in order to compute numerically prox g(gz:)7 with the only knowledge of prox; and Vg.
Finally, one can also consider the two-loops algorithm

xg € H,
Tn+l = y:m

(Ay) where y; is given by solving the auxiliary subalgorithm

Yn,0 S Ha
Yn,k+1 = 7]0,9(3:7“ yn,k)v

as a potential proximal-like algorithm z,,11 = prox; ,(7,), using only the knowledge
of prox; and Vg.

Convergence proofs (under some assumptions on f and g) and numerical experiments
of Algorithms (A3) and (A4), and eventually comparisons with other known algo-
rithms in the literature, should be the subject of future works.

4.2. Application to sensitivity analysis for variational inequalities. As
a conclusion of the present paper, we return back to our initial motivation, namely
the sensitivity analysis, with respect to a nonnegative parameter ¢ > 0, of some
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parameterized linear variational inequalities of second kind in a real Hilbert space H.
More precisely, for all ¢ > 0, we consider the variational inequality which consists of
finding u(t) € K such that

(ut), z = u(t)) + 9(2) = g(u(t)) = (r(t), z — u(t),

for all z € K, where K C H is a nonempty closed and convex set of constraints, and
where g € Tg(H) and r : Rt — H are assumed to be given. Note that the above
problem admits a unique solution given by

u(t) = prox;, ,(r(t)),
where f = 1k is the indicator function of K.

Our aim is to provide from Theorem 2.7 a simple and compact formula for the deriva-
tive u/(0) under some assumptions (see Proposition 4.3 for details). Following the idea
of F. Mignot in [17] (see also [13, Theorem 2 p.620]), we first introduce the following
sets

Oy :={weH|3IXN>0, projg(v) + \w e K}Nv— projK(v)]L7
C, = cl({w €eH|3IN>0, projg(v) + Aw € K}) N [v — projg (v)]*,

for all v € H, where L denotes the classical orthogonal of a set.

PROPOSITION 4.3. Let v(t) := r(t)—Vg(u(t)) for allt € R. If the following assertions
are satisfied:
(i) r is differentiable at t = 0;
(ii) g is twice differentiable on H;
(iii) Oy(oy is dense in Cyg);
(iv) w is differentiable at t = 0;
then the derivative u'(0) is given by

ul(o) = prox@f—&-gag (T/(O))7

where @y =10, and pg(z) = 5(D?g(u(0))(z), ) for all x € H.
Proof. Note that v is differentiable at ¢ = 0 with
v'(0) = +'(0) — D*g(u(0))(u'(0)).

Note that proxg is single-valued from Proposition 2.17 and Remark 2.5. From Theo-
rem 2.7, one can easily obtain that

v(t) = proxg(r(?f))7 and thus u(t) = prox; o proxg (r(t)) = projk (v(t)),

for all £ > 0. Since O, is dense in C, ), we use the asymptotic development
of F. Mignot [17, Theorem 2.1 p.145] and we obtain that

u'(0) = projg, ,, (v'(0)).
We deduce that
v/(0) + D2g(u(0)) o projc.,, (v/(0)) = 1(0).

Since g is convex and since C,(q) is a nonempty closed convex subset of H, we deduce

that ¢y, ¢, € [o(H). Moreover d(p;+py) = Opy + 0, from Remark 2.5 and prox},’
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is single-valued from Proposition 2.17. It also should be noted that Vi, = D?g(u(0)).
As a consequence, we have obtained that

v'(0) 4+ Vg o prox,, (v'(0)) = r'(0),

that is, v/(0) = prox{! (r(0)). We conclude the proof from the equality u’(0) =
prox,, . (v'(0)) and from Theorem 2.7. O

Remark 4.4. Proposition 4.3 provides an expression of «’(0) in terms of the proximity
operator of a sum of two closed and convex functions. Hence, it could be numerically
computed from Algorithm (A;), requiring the knowledge of projcv(o) and prox,, .
Alternatively, if the convergence is proved, one can also consider Algorithm (As3)
requiring the knowledge of projcuw) and Vi, = D?g(u(0)).

Remark 4.5. The relaxations in special frameworks of the assumptions of Proposi-
tion 4.3 should be the subject of future works. In particular, it would be relevant to
provide sufficient conditions on K and g ensuring that u is differentiable at t = 0.

The application of Proposition 4.3 in the context of some shape optimization problems
with unilateral contact and friction is the subject of a forthcoming research paper
(work in progress).
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